Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhong-Lu You

Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China

Correspondence e-mail:
youzhonglu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.035$
$w R$ factor $=0.100$
Data-to-parameter ratio $=15.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

\{4-Chloro-2-[(2-dimethylaminoethylimino)methyl]phenolato\}thiocyanatocopper(II)

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}\right)(\mathrm{NCS})\right]$, is a mononuclear Schiff base copper(II) complex. The $\mathrm{Cu}^{\text {II }}$ atom is coordinated by one O and two N atoms of the Schiff base ligand, and by one N atom of the thiocyanate ligand, forming a square-planar coordination. The molecule possesses crystallographic mirror symmetry.

Comment

Recently, the author has reported a series of Schiff base complexes (You, 2005a,d,e). As an extension of the work on the structural characterization of Schiff base complexes, the synthesis and structure of a new copper(II) compound, (I), is reported here.

The molecular structure of complex (I), a mononuclear copper(II) compound, is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. Compound (I) is structurally similar to the copper(II) compounds reported recently (You, 2005b,c). The Cu atom is four-coordinated, in a square-planar arrangement, by one O and two N atoms of the Schiff base ligand, and by one N atom of the thiocyanate anion.

The molecule possesses crystallographic mirror symmetry, with almost all atoms lying in the crystallographic mirror plane. The angles at Cu indicate a slightly distorted squareplanar coordination. The $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ bond lengths (Table 1) are comparable to the corresponding values observed in other Schiff base copper(II) complexes (MacLachlan et al., 1996; Colacio et al., 2000) and, as expected, the bond involving amine atom N 2 is longer than that involving imine atom N1 (Mondal et al., 2001).

In the crystal structure, the molecules stack along the b axis and the crystal packing is shown in Fig. 2.

Experimental

5-Chlorosalicylaldehyde ($0.1 \mathrm{mmol}, 15.6 \mathrm{mg}$) and N, N^{\prime}-dimethyl-ethane-1,2-diamine ($0.1 \mathrm{mmol}, 8.8 \mathrm{mg}$) were dissolved in MeOH $(10 \mathrm{ml})$. The mixture was stirred at room temperature for 20 min to give a yellow solution. To the above solution was added an aqueous solution (2 ml) of $\mathrm{NH}_{4} \mathrm{NCS}(0.1 \mathrm{mmol}, 6.5 \mathrm{mg})$ and an MeOH solu-
tion (3 ml) of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$, with stirring. The mixture was stirred for another 20 min at room temperature. The filtrate was kept in air for 9 d , during which time blue block-shaped crystals were formed.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}\right)(\mathrm{NCS})\right]$

$M_{r}=347.31$

Orthorhombic, Pnma
$a=19.172$ (2) \AA
$b=6.764$ (1) \AA
$c=11.334$ (1) \AA
$V=1469.8(3) \AA^{3}$
$Z=4$
$D_{x}=1.570 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.692, T_{\text {max }}=0.714$
12043 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 4650 reflections
$\theta=2.8-27.2^{\circ}$
$\mu=1.80 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, blue
$0.22 \times 0.20 \times 0.20 \mathrm{~mm}$

1827 independent reflections
1558 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-24 \rightarrow 24$
$k=-8 \rightarrow 8$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.100$
$S=1.05$
1827 reflections
117 parameters
H -atom parameters constrained

Figure 1
The molecular structure of compound (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The atom labelled with the suffix A is at the symmetry position $\left(x, \frac{1}{2}-y\right.$, $z)$. Only one component of the disordered C9 group is shown.

Figure 2
The crystal packing of compound (I), viewed along the b axis.

MacLachlan, M. J., Park, M. K. \& Thompson, L. K. (1996). Inorg. Chem. 35, 5492-5499.
Mondal, N., Mitra, S., Gramilich, V., Ghodsi, S. O. \& Malik, K. M. A. (2001). Polyhedron, 20, 135-141.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
You, Z.-L. (2005a). Acta Cryst. E61, m1559-m1560.
You, Z.-L. (2005b). Acta Cryst. E61, m1963-m1964.
You, Z.-L. (2005c). Acta Cryst. E61, m2226-m2227.
You, Z.-L. (2005d). Acta Cryst. E61, m2499-m2500.
You, Z.-L. (2005e). Acta Cryst. E61, m2501-m2502.

